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Abstract. The species extinction is caused sometimes by environmental forces such as habitat fragmentation,

climate change, natural disaster, evolutionary changes etc, and sometimes by over-exploitation by humans, and

pollution, to preserve the biodiversity in order to protect the ecosystem and the environmental life cycle, it is

essential to predict the probabilities of the future in the way to interfere to save and protect the species from
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exploiting three species with some numerical simulations at the end.
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1 Introduction

It is known that competition between species ensures biodiversity and evolution, where compe-
tition is an interaction between organisms or species in which both require a resource that is
in limited supply such as food, water, or territory (Begon, 1996). So, the species that compete
with each other actually they ensure their evolution and breed to preserve their survival and
continuation in the way to prevent extinction (Lindegren et al., 2013; Mehrim et al., 2023).

According to Raup (1994), the role of extinction in evolution is not very well understood
and may depend on which type of extinction is considered may be the result of competition
between species for limited resources (the competitive exclusion principle) or climate change
(Kutscheran, 2004; Dainys et al., 2019).

As reported by the International Union for Conservation of Nature’s 1,616 species of fish
are at risk of extinction; another 989 are endangered and 627 are critically endangered. In this
context, we consider fish exploitation by human as an interesting indicator of endangered fish
harvested for food, as there are many aspects of danger.

In this work, we study three competing species which are mainly harvested for food.

*How to cite (APA): Riahi, C., Agmour, I., & El Foutayeni, Y. (2023). Impact of temperature on profit
estimation of two Fishermen exploiting three competing species using Markov chain. Advanced Mathematical
Models & Applications, 8 (1), 65-82.
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The three of the species are supposed to live in the Atlantic ocean (Casablanca region) which
are in competition for food and space, and also suffers from the highest exploitation rate harvest
for food.

This work aims to study the temperature effect on the fishermen profit, the temperature
factor is considered as an external factor of the bioeconomic Model that Maximises the profit
of two fishermen exploiting three species in competition, The maximisation problem is solved
using the Nash Equilibrium problem which announces that actors must not deviate from their
initial strategy to ensure the desired outcome that (El Foutayeni & Khaladi, 2010; 2012), and
(El Foutayeni & Zegzouti, 2012) developed, yet the considered system is not a closed one, as
there are external factors that can affect the desired results which temperature is one of them
(Jensen et al., 2017).

The choice of the temperature factor is based on its effect on the elements of our system; its
effect the fishermen side and also species side, which ensures that it affects the profit consequently
(Skov & Arlinghaus, 2017).

The paper is structured as follows: The section 2, contains the hypothesis considered in
the model construction. The Section 3, defines the biological model of fish populations. The
section 4, defines the bioeconomic model of the fish populations taking into consideration the
fact that the prices of fish populations vary according to the quantity harvested (El Foutayeni,
2012; Bentounsi et al., 2018). In The section 5, we study the profit Estimation of fishermen
considering temperature factor. In section 6, we present some numerical simulations to illustrate
the results, and in Section 7, we present a discussion around the results of this work. Finally,
in Section 8 we give a conclusion.

2 Hypothesis

1. We suppose that the biomass of the three marine species are strictly positive.

2. We suppose that the biomass growth follows logistic growth.

3. We suppose that the predators of the three species are not taken in consideration in this
model.

4. We suppose that the three species are in comepetition for food and space.

5. We suppose that pandemic problems are not considered in this model.

6. We suppose that the temperature factor follows the Markov Proprety.

3 Biological Model

The purpose of this section is to define the biological equilibrium of the three competitive marine
species, and whose natural growth of each is obtained by the logistic law.

3.1 The Biomass Evolution Model of The Three Populations

The evolution of the biomass of the fish population in competition is modeled by the following
mathematical system of logistic growth.

Ḋ1 = r1D1

(
1− D1

K1

)
− c12D1D2 − c13D1D3

Ḋ2 = r2D2

(
1− D2

K2

)
− c21D2D1 − c23D2D3

Ḋ3 = r3D3

(
1− D3

K3

)
− c31D1D3 − c32D2D3,

(1)
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where (Dj)j=1,2,3 are the densities of populations; (rj)j=1,2,3 are the intrinsic growth rates;
(Kj)j=1,2,3 are the carrying capacities for the respective species; and (cjk)1≤j 6=k≤3 are the coef-
ficients of competition between species k and species j.

Proposition 1. The persistent model of a dynamical system of differential equations can be
estimated by setting all derivativeses to zero.

The steady states of the system of equations (1) are obtained by solving the equations
r1D

∗
1

(
1− D∗1

K1

)
− c12D∗1D∗2 − c13D∗1D∗3 = 0

r2D
∗
2

(
1− D∗2

K2

)
− c21D∗2D∗1 − c23D∗2D∗3 = 0

r3D
∗
3

(
1− D∗3

K3

)
− c31D∗1D∗3 − c32D∗2D∗3 = 0,

(2)

where
(
D∗j

)
j=1,2,3

are the steady states of the three populations growth.

The solution of system (2) is defined by P (D∗1, D
∗
2, D

∗
3) as follows

D∗1 = 1
χK1 (rt −K2r2r3c12 −K3r2r3c13) +

1
χK1 (−K2K3r1c23c32 +K2K3r2c13c32 +K2K3r3c12c23)

D∗2 = 1
χK2 (rt −K1r1r3c21 −K3r1r3c23) +

1
χK2 (K1K3r1c31c23 −K1K3r2c13c31 +K1K3r3c21c13)

D∗3 = 1
χK3 (rt −K1r1r2c31 −K2r1r2c32) +

1
χK3 (K1K2r1c21c32 +K1K2r2c12c31 −K1K2r3c12c21) ,

(3)

where χ = rt + K1K2c12 (K3c31c23 − r3c21) + K3K2c32 (K1c21c13 − r1c23c32) − K1K3r2c13c31

and rt = r1r2r3.

Remark 1. This system admits other solutions that we didn’t consider as it contradicts the
hypothesis; for example, the point P (0, 0, 0) is neglected as the system will lose its meaning if
the densities are equal to 0.

Proposition 2. A steady state is stable if it is locally asymptotically stable.

Theorem 1. The point P (D∗1, D
∗
2, D

∗
3) is locally asymptotically stable.

Proof. We proof this theorem by using Routh-Hurwitz stability criterion.

The variational matrix of the system at the steady state P (D∗1, D
∗
2, D

∗
3) is

V =

 V11 −c12D∗1 −c13D∗1
−c21D∗1 V22 −c23D∗2
−c31D∗3 −c32D∗3 V33

 , (4)

where 
V11 = r1(1−

2D∗1
K1

)− c12D∗2 − c13D∗3
V22 = r2(1−

2D∗2
K2

)− c21D∗1 − c23D∗3
V33 = r3(1−

2D∗3
K3

)− c31D∗1 − c32D∗2.
(5)

Using (2) we have 
r1D

∗
1

(
1− 2D∗1

K1

)
− c12D∗1D∗2 − c13D∗1D∗3 = − r1

D∗1
K1

r2D
∗
2

(
1− 2D∗2

K2

)
− c21D∗2D∗1 − c23D∗2D∗3 = −r2

D∗2
K2

r3D
∗
3

(
1− 2D∗3

K3

)
− c31D∗1D∗3 − c32D∗2D∗3 = − r3

D∗3
K3
,

(6)

67



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.8, N.1, 2023

Then

V =

 − r1
D∗1
K1

−c12D∗1 −c13D∗1
− c21D∗2 −r2

D∗2
K2

− c23D∗2
−c31D∗3 − c32D∗3 − r3

D∗3
K3

 . (7)

However the biological model is meaningful only if the biomasses of the three species are
strictly positive; D∗i > 0.

The polynomial format of the variational matrix is represented by:

Q(λ) = a0λ
3 + a1λ

2 + a2λ+ a0 , (8)

where
a0 = 1

a1 = 1
K1
r1D

∗
1 + 1

K2
r2D

∗
2 + 1

K3
r3D

∗
3

a2 = 1
K1K2

r1r2D
∗
1D
∗
2 − c13c31D∗1D∗3 − c23c32D∗2D∗3−

c12c21D
∗
1D
∗
2 + 1

K1K3
r1r3D

∗
1D
∗
3 + 1

K2K3
r2r3D

∗
2D
∗
3

a3 = c12c31c23D
∗
1D
∗
2D
∗
3 + c21c13c32D

∗
1D
∗
2D
∗
3 − r1

K1
c23c32D

∗
1D
∗
2D
∗
3−

r2
K2
c13c31D

∗
1D
∗
2D
∗
3 − r3

K3
c12c21D

∗
1D
∗
2D
∗
3 + r1r2r3

K1K2K3
D∗1D

∗
2D
∗
3.

As for ri > cijKj ,∀i, j = 0, 1, 2, 3, with i 6= j, we have
a0 = 1 > 0
a1 = r1

K1
D∗1 + r2

K2
D∗2 + r3

K3
D∗3 > 0

a2 > 0
a3 > 0.

(9)

Consequently we have:

(a1a2 − a0a3) = D∗1(D∗2)2
(

r1r22
K1K2

2
− r2

K2
c12c21

)
+ (D∗1)2D∗2

(
r21r2
K2

1K2
− r1

K1
c12c21

)
+

D∗1(D∗3)2
(

r1r23
K1K2

3
− r3

K3
c13c31

)
+ (D∗1)2D∗3

(
r21r3
K2

1K3
− r1

K1
c13c31

)
+

D∗2(D∗3)2
(

r2r23
K2K2

3
− r3

K3
c23c32

)
+D∗1D

∗
2D
∗
3

(
2r1r2r3
K1K2K3

− c12c31c23
)

+D∗1D
∗
2D
∗
3 (−c21c13c32) > 0.

(10)

And therefore by Routh Hurwitz stability criterion the point P (D∗1, D
∗
2, D

∗
3) is locally asymp-

totically stable as we have χ > 0 and (D∗j )j=1,2,3 > 0.

4 Bioeconomic Model of the Three Populations of Fish

The main purpose of this section is to define and study a bioeconomic equilibrium model for
two fishermen who catch three fish populations.

The fishing amount can be studied from different aspects, in this context we introduce the
fishing by its correlations with the effort, the catchability and population growth rate by the
amount:

Hij = qjEijDj , (11)

where (qj)j=1,2,3 are the catchability coefficients of species j; and (Ej)j=1,2,3 are the fishing
efforts to exploit species j.

This bioeconomic model includes three parts in correlation: a biological part, an exploitation
part, and an economic part.
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4.1 Biological Part

The aim of the biological part is to connect the catchability to the biomass stock.
We give expression of biomass as a function of fishing effort.

Ḋ1 = r1D1

(
1− D1

K1

)
− c12D1D2 − c13D1D3 − q1E1D1

Ḋ2 = r2D2

(
1− D2

K2

)
− c21D2D1 − c23D2D3 − q2E2D2

Ḋ3 = r3D3

(
1− D3

K3

)
− c31D1D3 − c32D2D3 − q3E3D3

. (12)

Remark 2. In this paper we assume that the catchability coefficient q is a constant.

The evolution model of fish population becomes:
r1

(
1− D1

K1

)
= c12D2 + c13D3 + q1E1

r2

(
1− D2

K2

)
= c21D1 + c23D3 + q2E2

r3

(
1− D3

K3

)
= c31D1 + c32D2 + q3E3

. (13)

The solutions of the system (12) are given by:
D1 = n11E1 + n12E2 + n13E3 +D∗1
D2 = n21E1 + n22E2 + n23E3 +D∗2
D3 = n31E1 + n32E2 + n33E3 +D∗3,

(14)

where
n11 = −K1(K2K3q1c23c32−q1r2r3)

χ

n21 = K2(K1K3q1c31c23−K1q1r3c21)
χ

n31 = K3(K1K2q1c21c32−K1q1r2c31)
χ

n12 = −K1(K2q2r3c12−K2K3q2c13c32)
χ

n22 = K2(q2r1r3−K1K3q2c13c31)
χ

n32 = K3(K1K2q2c12c31−K2q2r1c32)
χ

n13 = −K1(K3q3r2c13−K2K3q3c12c23)
χ

n23 = K2(K1K3q3c21c13−K3q3r1c23)
χ

n33 = K3(q3r1r2−K1K2q3c12c21)
χ .

We define the matrixD, whereD = −NE+D∗ andN = (−nij)1≤i,j≤3 and E = (E1, E2, E3)
T .

As supposed rjrk > cijcjiKiKj for all j, k = 1, 2, 3, that implies that nii < 0 for all i = 1, 2, 3.

4.2 Exploitation Part

The purpose of the exploitation part is to connect the catch to the fishing effort.

1. The fishing effort is defined as the amount of fishing activity and power.

2. The effort depends on several variables: number of hours spent fishing; number of days
spent fishing; technology; number of operations; ship; fishing gear etc.

3. The effort is a unidimensional variable which includes a combination of all these factors.

4. The factors cited above are considered internal elements of our system that are measurable
and optimizable in the term of the fishing strategy, there are also external factors that can
affect the fishing effort and that are not considered in the marginal measured elements of
the fishing strategy.
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4.2.1 The Net Economic Revenue

We represent the profit of each fisherman by the following function:

Πi(E) = (TR)i − (TC)i , (15)

where Πi(E) is the the profit for each fisherman, (TR)i is the total revenue and (TC)i is the
total cost. While, the Total Revenue depends lineary on the catch TR = price× catches. The
total catches of species j by all fishermen

Hj =
∑

Hij . (16)

The total fishing effort dedicated to species j by all fishermen

Ej =
∑

Eij . (17)

We develop these notations as follow:
(TR)i = p1Hi1 + p2Hi2 + p3Hi3

= p1q1Ei1D1 + p2q2Ei2D2 + p3q3Ei3D3

= p1q1Ei1 (n11E1 + n12E2 + n13E3 +D∗1)
+p2q2Ei2 (n21E1 + n22E2 + n23E3 +D∗2)
+p3q3Ei3 (n31E1 + n32E2 + n33E3 +D∗3)

= p1q1Ei1

(
n11

n∑
i=1

Ei1 + n12
n∑
i=1

Ei2 + n13
n∑
i=1

Ei3 +D∗1

)
+p2q2Ei2

(
n21

n∑
i=1

Ei1 + n22
n∑
i=1

Ei2 + n23
n∑
i=1

Ei3 +D∗2

)
+p3q3Ei3

(
n31

n∑
i=1

Ei1 + n32
n∑
i=1

Ei2 + n33
n∑
i=1

Ei3 +D∗3

)
.

Then

(TR)i =
〈
Ei,−pqNEi

〉
+

〈
Ei, pqD∗ −

n∑
j=1.j 6=1

pqNEj

〉
, (18)

where (pj)j=1,2,3 is the price per unit biomass of the species j. In this work, we take p1, p2 and
p3 as constants.

4.3 Economic Part

The aim of this part is to connect the fishing effort to the profit.

4.3.1 The Total Effort Cost

In consederation of many standard fisheries models, (e.g., the model of (Clark, 1975) and (Gor-
don, 1954) ), we assume that

(TC)i =< ci, Ei >, (19)

where (TC)i is the total effort cost of the fisherman i, and ci is the constant cost per unit of
harvesting and Ei is the total effort of the fisherman i.

4.3.2 Expression of The Profit

The revenue of each fisherman is represented by the following function

Πi(E) = (TR)i − (TC)i

=
〈
Ei,−pqNEi

〉
+

〈
Ei, pqD∗ −

n∑
j=1.j 6=1

pqNEj

〉
.

(20)
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As the biological model is meaningful only if the biomass of all the marine species are strictly
positive.

Then D = −NE +D∗ ≥ D0 > 0.
For each fisherman i we have

NEi ≤ −
n∑

j=1.j 6=1

NEj +D∗. (21)

4.3.3 Nash Equilibrium

A Nash equilibrium solution exists when the involved fishermen does not change the strategy of
fishing; while each fisherman tries to maximize his profit and achieve a fishing effort.

This problem can be translated into an optimization problem:
The first fisherman must solve problem (P1)

max Π1(E) =
〈
E1,−pqNE1 + pqD∗ − c− pqNE2

〉
, (22)

As
NE1 ≤ −NE2 +D∗,
E1 ≥ 0 ,
E2 is given .

And the second fisherman must solve problem (P2):

max Π2(E) =
〈
E2,−pqNE2 + pqD∗ − c− pqNE1

〉
, (23)

As
NE2 ≤ −NE1 +D∗,
E2 ≥ 0 ,
E1 is given .

The point (E1, E2) is a generalized Nash equilibrium, where E1 is a solution of problem (P1)
for E2 given, and E2 is a solution of problem (P2) for E1 given.

The solution of the Generalized Nash Equilibrium Problem. By applying Karush-
Kuhn-Tucker to problem (P1) we have u1 ∈ R3

+, v1 ∈ R3
+ and λ1 ∈ R3

+ such that
2pqNE1 + c− pqD∗ + pqNE2 − u1 +NTλ1 = 0
NE1 + v1 = −NE2 +D∗

< u1, E1 > =< λ1, v1 > = 0.

In the same way, the conditions of Karush-Kuhn-Tucker applied to problem (P2), we have
u2 ∈ R3

+, v2 ∈ R3
+ and λ2 ∈ R3

+ such that
2pqNE2 + c− pqD∗ + pqNE1 − u1 +NTλ2 = 0

NE2 + v2 = −NE2 +D∗

< u2, E2 > =< λ2, v2 > = 0.
(24)

From (23) and (24) we have

u1= 2pqNE1+c− pqD∗+pqNE2+NTλ1

u2= 2pqNE2+c− pqD∗+pqNE1+NTλ2

v1= −NE1−NE2+D∗

v2= −NE1−NE2+D∗

< ui, Ei> =< λi, vi> = 0 for all i = 1, 2, 3 (∗1)

Ei, ui, λi, vi > 0 for all i = 1, 2, 3 (∗2)

(25)
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From (∗1) and (∗2) we have v1 = v2. And as Dj > 0 for all j = 1, 2, 3 ; therefore v1 = v2 > 0. We
also have the scalar product of (λi)i=1,2,3 = 0 and (vi)i=1,2,3 = 0 . We denote by v = v1 = v2,
so we have: 

u1= 2pqNE1+pqNE2+c− pqD∗
u2= 2pqNE2+pqNE1+c− pqD∗
v = −NE1−NE2+D∗

< ui, Ei> = 0 for all i = 1, 2, 3
Ei, ui, vi > 0 for all i = 1, 2, 3.

(26)

So  u1

u2

v

=

 2pqN pqN NT

pqN 2pqN 0
−N −N 0

 E1

E2

0

+

 c− pqD∗
c− pqD∗

D∗

 . (27)

Linear Complementarity Problem. Considering (27) we have a linear complementarity
problem equivalent to the Nash equilibriumn problem LCP (M, b) meaning that z, w ∈ R6 in
order

LCP (M, b)


w = Mz + b > 0
z, w > 0
zTw = 0.

(28)

We verify that the LCP (M, b) has a unique solution by the next Theorem.

Theorem 2. LCP (M, b) has a unique solution for every b if and only if M is a P −matrix.

Proof. Suppose when the complementary pivot algorithm is applied on the LCP(q,M) it ends
in ray termination.

As M is a copositive plus matrix and the system has a feasible solution, the LCP has a
solution, this implies that there exists a zh ≥ 0, wh ≥ 0, zh0 ≥ 0 satisfying wh = Mzh + enz

h
0 ;

whi z
h
i = 0 for all i.
So zhi

(
Mi.z

h
)

+ zhi z
h
0 = 0. This implies that zhi

(
Mi.z

h
)

= −zhi z0h 5 0 for all i.
So M reverses the sign of zh ≥ 0, which is a contradiction to the proprety of the nonreversal

sign. So, when the complementary pivot method is applied on the LCP(q,M) associated with
a P -matrix, it cannot end in ray termination, it has to terminate with a solution of the LCP.
This also proves that every P -matrix is a Q-matrix.

Now we will prove that if M is a P -matrix, for any q ∈ Rn, the LCP(q,M) has exactly one
solution, by induction on n, the order of the problem.

Suppose n = 1. M = (m11) is a P -matrix, if m11 > 0. In this case q = (q1).
If q1 ≥ 0, (w = (w1) = (q1) ; z = (z1) = (0)) is the only solution to the LCP(q,M).
If q1 < 0, (w = (w1) = (0); z = (z1) = (−q1/m11)) is the only solution to the LCP(q,M).
Hence the theorem is true for n = 1.
Induction Hypothesis:
Suppose any LCP of order (n− 1) or less, associated with a P -matrix, has a unique solution

for each of its right hand side constant vectors.
Now we will prove that under the induction hypothesis, the LCP(q,M) where M is a

P -matrix of order n, has a unique solution for any q ∈ Rn.
We have shown above that it has at least one solution, say (w̃; z̃). For each j = 1 to n let

uj = zj , if z̃j > 0; or wj otherwise; and let vj be the complement of uj .
Then u = (u1, . . . , un) is a complementary feasible basic vector of variables associated with

the Basic feasible solution (w̄; z̄) .
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Obtain the canonical next table with respect to the complementary feasible basic vector u,
and suppose it is

u1, . . . , un v1, . . . , vn q

I −M̃ q̃

q̃ = 0 by our assumptions here.

The table above can itself be viewed as the LCP(q̃, M̃), one solution of this LCP is (u = ũ =
q̃; v = ṽ = 0).

M̃ is a Principal pivot transform of M , as LCP(q̃, M̃) has a unique solution, M̃ is also a
P -matrix.

So all the principal submatrices of M̃ are also P -matrices.
So the principal subproblem of the LCP (q̃, M̃) in the variables (u1, . . . , ui−1, ui+1, . . . , un);

(v1, . . . , vi−1, vi+1, . . . , vn) is an LCP of order (n − 1) associated with a P -matrix, and by the
induction hypothesis this principal subproblem has a unique solution.

One solution of this principal subproblem is (ũ1, . . . , ũi−1, ũi+1, . . . , ũn; ṽ1, . . . , ṽi−1, ṽi+1, . . . , ṽn) =
(q̃1, . . . , q̃i−1, q̃i+1, . . . , q̃n; 0, . . . , 0, 0, . . . , 0).

If the LCP(q̃, M̃), has an alternate solution (û; v̂) 6= (ũ; ṽ) in which v̂i = 0, its principal
subproblem in the variables (u1, . . . , ui−1, ui+1, . . . , un) ; (v1, . . . , vi−1, vi+1, . . . , vn) will have an
alternate solution (û1, . . . , ûi−1, ûi+1, . . . , ûn; v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂n), a contradiction.

So, if the LCP(q̃, M̃) has an alternate solution (û; v̂) 6= (ũ; ṽ), then v̂i must be strictly positive
in it, and by complementarity ûi must be zero. Since this holds for each i = 1 to n, v̂ > 0, û = 0.

So û − M̃v̂ = q̃, û = 0, v̂ > 0. Since q̃ = 0, this implies that M̃v̂ = −q̃ 5 0, v̂ > 0, a

contradiction since M̃ is a P -matrix.
Hence under the induction hypothesis the LCP(q̃, M̃) has a unique solution, which implies

that the equivalent LCP(q,M) has a unique solution also.
Since this holds for any q ∈ Rn, under the induction hypothesis, the LCP (q,M) of order n

has a unique solution for each q ∈ Rn when M is a P -matrix.
Hence, by induction the theorem is true.

Remark 3. If M is a P −matrix then the Nash equilibrium problem has a unique solution.

Theorem 3. The matrix

M =

 2pqN pqN NT

pqN 2pqN 0
−N −N 0

 . (29)

is a P −matrix.

Proof. As we have nii < 0 for all i = 1, 2, 3 and χ > 0, we denote by (Mi)i=1,....,9 the submatrix
of M. Then we obtain

det(M1) = −2p1q1n11 > 0,

det(M2) = 4p1q1p2q2q1K1r3q2K2χ > 0,

det(M3) = 8p1q1p2q2p3q3q3K3q1K1q2K2χ
2 > 0,

det(M4) = −12n11p
2
1q

2
1p2q2p3q3q3K3q1K1q2K2χ

2 > 0,
det(M5) = 18p21q

21p22q
2
2p3q3q1K1r3q2K2q3K3q1K1q2K2χ

3 > 0,

det(M6) = 27p21q
2
1p

2
2q

2
2p

2
3q

2
3(q3K3q1K1q2K2χ

2)2 > 0,

det(M7) = −9p1q1p
2
2q

2
2p

2
3q

2
3n11(q3K3q1K1q2K2χ

2)2 > 0,

det(M8) = 3p1q1p2q2p
2
3q

2
3q1K1r3q2K2χ(q3K3q1K1q2K2χ

2)2 > 0,

det(M9) = p1q1p2q2p3q3(q3K3q1K1q2K
2χ2)3 > 0.
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As det(Mi)i=1,....,9 > 0 then the matrix M is P − matrix. So the linear complementarity
problem LCP (M, b) admits one and only one solution representing the Nash equilibrium problem
given by

{
E1 = 1

3N
−1(D∗ − c

pq )

E2 = 1
3N
−1(D∗ − c

pq )
, (30)

where

N−1 =


r1

K1q1
c12
q1

c13
q1

c21
q2

r2
K2q2

c23
q2

c31
q3

c32
q3

r3
K3q3

 .

We conclude the fishing effort that maximizes the profit of the fishermen for catching the
three species given by (31)

E11=
1
3

[
r1

K1q1
[
(
D∗1 − c1

p1q1

)
+ c12

q1

(
D∗2 − c1

p2q2

)
+ c13

q1

(
D∗3 − c1

p3q3

)]
E12=

1
3

[
r2

K2q2

(
D∗2 − c1

p2q2

)
+ c21

q2

(
D∗1 − c1

p1q1

)
+ c23

q2

(
D∗3 − c1

p3q3

)]
E13=

1
3

[
r3

K3q3

(
D∗3 − c1

p3q3

)
+ c31

q3

(
D∗1 − c1

p1q1

)
+ c32

q3

(
D∗2 − c1

p2q2

)]
E21=

1
3

[
r1

K1q1

(
D∗1 − c2

p1q1

)
+ c12

q1

(
D∗2 − c2

p2q2

)
+ c13

q1

(
D∗3 − c2

p3q3

)]
E22=

1
3

[
r2

K2q2

(
D∗2 − c2

p2q2

)
+ c21

q2

(
D∗1 − c2

p1q1

)
+ c23

q2

(
D∗3 − c2

p3q3

)]
E23=

1
3

[
r3

K3q3

(
D∗3 − c2

p3q3

)
+ c31

q3

(
D∗1 − c2

p1q1

)
+ c32

q3

(
D∗2 − c2

p2q2

)]
,

(31)

where Eij is the fishing effort for fisherman i = 1, 2 catching species j = 1, 2, 3.

5 The Profit Estimation Considering Temperature Factor

The aim of this section is to estimate the profit of each fisherman taking in consideration the
temperature factor

5.1 Open Dynamical system

The problem of determining the fishing effort that maximizes the profit of each fisherman is
solved by a Nash equilibrium problem.

By definition a Nash equilibrium exists when there is no unilateral profitable deviation from
any of the fishermen involved. In other words, no fisherman would take a different action as
long as every other fishermen’s strategy remains the same.

This system (two fishermen exploiting three species) is not considered as a closed one, as
the two of the fishermen will not change their strategies, yet there are external factors that can
interfere in their profit.

5.1.1 External Factors

The habitat characteristics of fish species distribution require physical factors: temperature,
water depth, current, waves, etc., and chemical factors: oxygen levels, dissolved minerals, and
other substances in their environment.

These characteristics are also conditions of biomass existence and evolution, in other words,
if these factors changes, the species react to these changes in order to secure their existence, by
immigrating for example.
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In this paper, we will estimate the profit of two fishermen exploiting three species and
taking into consideration the temperature factor, as the temperature factor is the first important
physical factor that interferes in the catchability and spawning of the three species, and also the
activity of the fisherman effort.

”As temperature rises, fish are able to digest food quicker, have more energy, and feed more
often. So fish become more active and generally are easier to catch. There is a limit though, as
temperatures rise the amount of dissolved oxygen in the water decreases”.

To study the temperature estimation, we recall the definition of a Discrete-time Markov
chain.

Definition 1. A discrete-time Markov chain is a sequence of random variables X0, X1, ...,with
the Markov property, known as a stochastic process, in which the value of the next variable
depends only on the value of the current variable

Pr(Xn+1 = x|X1 = x1, X2 = x2....Xn = xn) = Pr(Xn+1 = x|Xn = xn).

The probability of Xn+1 only depends on the probability of Xn.

Definition 2. A Markov chain is called homogeneous if and only if the transition probabilities
are independent of the time, such that :

Pr(Xn+1 = x|Xn = xn) = Pr(X1 = j|X0 = i) where j + i = 1.

5.2 Study Conditions

1. In the region that we are going to study the temperature factor by the Markov chain is:
Morocco Casablanca, Home Anfa Station lat: 33.5893, lon: -7.6624, alt: 59 m.

2. Time range considered is between 12h and 06h.

3. We observe that there are three dominating temperature states in the time range consid-
ered: Warm [24◦ − 29◦], Comfortable [13◦ − 24◦C], Cold [7◦ − 13◦C].

In the next, we aim to study the temperature estimation for the year 2023, based on the
temperature of the years 2020 and 2021. We divide the year periods as trimestrial periods where
we observe that for every trimester there are two dominating states as follows:

• Trimester 1: From 1 September to 30 November: Comfortable, Warm.

• Trimester 2: From 1 December to 28 February: Comfortable, Cold.

• Trimester 3: From 1 March to 31 May: Comfortable, Cold.

• Trimester 4: From 1 June to 31 August: Comfortable, Warm.

5.2.1 Markov Graph

The Markov graph is obtained by determining the global states of a period where sij is the
probability of going from the state i to state j, for i, j = 1, 2 depending on the period studied,
and obtained by calculating the quotient of the number of passages between two states and the
global number of days in a perdiod.

We define the 2× 2 stochastic matrix S by

S =

[
s11 s12
s21 s22

]
, (32)
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where sij are the passage probabilities of going from state i to j, sij ∈ [0, 1] for i, j = 1, 2 with
s11 + s12 = 1 and s21 + s22 = 1.

We define the probability vector by Xk for k = 1, ....n :

Xk =

[
(s1)k
(s2)k

]
(33)

with (s1)k is the probability of state 1 in a day k, and (s2)k is the probability of state 2 in a day
k with (s1)k + (s2)k = 1.

As we have Xk+1 = SXk, then

X1 = SX0

X2 = SX1 = S × SX0 = S2X0.

For n iteration, we obtain
Xn = SnX0. (34)

Remark 4. We are not interested to determine the eigenvalues and eigenvectors in consequence
X∞. This is a local study of different seasons periods of time that will not preserve the same
probability for long term range and there are other improbable natural factors that interfere and
would not allow the convergence of the tool.

5.3 Fishermen response to temperature change

In the fishery field the temperature term can define water temperature and water temperature
and both likely affect both fish and fishers (Finnis, 2022; Li, 2021), the effect has emerged from
water temperature and weather temperature.

The study made by Fiorella et al. (2021) have proved trough an empirical study using ob-
served, longitudinal, and household-level fish catch and fishing behavior data. The study claims
that temperature changing affect the human behavior that consequently affects the fishermen
profit.

The behavioral pathway analysis on fishing participation, effort, and gear use demonstrated
that an increase in air temperature from 28◦ to 29◦C, reduced the probability of fishing by 6%,
while a sustained increase from 29◦ to 30◦C reduced the probability of fishing by 8%.

They claim also that the effects are additive.
We conclude that the effect of temperature on the human behavior, is not about the tem-

perature degree itself, but it is about the changing from one state to another state, which means
that the probability of fishing rate distribution is not linearly dependant to the temperature,
but it occurs when the temperature change is significant.

In this work, we are interested in the number of the changing states of temperature.

5.3.1 Hypothesis

1. We suppose that the temperature change effect is reversible.

2. We predict the temperature state as a range of temperature degrees. It is difficult from
this method to decide the prediction of the exact temperature degree, so we suppose that
the probability of fishing rate increase or decrease by 14% when we go from a state to
another.
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5.4 Trimester 1: from 1 September to 30 November

Markov graph

Comfortable Warm0.965

0.035

0.6

0.4

Figure 1: Markov graph of the trimester 1

Stochastic matrix

S =

comfortable warm[
0.965 0.035
0.6 0.4

]
comfortablewarm (35)

Probability vector
As the first day of Septembre 2021 the temperature is comfortable, then the probability

vector is

X1 =

[
(s1)1 = 1
(s1)2 = 0

]
,

where X1 is the probability vector of the first day of the Trimester. For n1 = 1, ..., 91 we have

Xn1 = Sn1X0 (36)

Proposition 3. For the Trimester 1 the Markov Chain achieves equilibrium at n = 12.

Remark 5. From n1 = 12 the distribution is the same for the two states. So Pr(Xn1=13,......91) =
1
2 that means that by the day 12 a significant temperature change occurs between the Comfortable
and Warm states that decrease the probability of fishing by 14%.

5.5 Trimester 2: from 1 December to 28 February

Markov graph

Comfortable Cold0.965

0.035

1

0

Figure 2: Markov graph of the trimester 2

Stochastic matrix

S =

comfortable cold[
0.965 0.035

1 0

]
comfortablecold (37)
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Probability vector
As the first day of December 2021 the temperature is comfortable, then the probability vector

is

X1 =

[
(s1)1 = 1
(s1)2 = 0

]
,

where X1 is the probability vector of the first day of the Trimester. For n2 = 1, ..., 90 we have

Xn2 = Sn2X0 (38)

Proposition 4. For the Trimester 2 the Markov Chain achieves equilibrium at n = 4.

Remark 6. From n2 = 4 the distribution is the same for the two states. So Pr(Xn2=4,......90) = 1
2

which means that by day 4 a significant temperature change occur between the Comfortable and
Cold states that decrease the probability of fishing by 14%.

5.6 Trimester 3: from 1 March to 31 May

Markov graph

Comfortable Cold0.95

0.05

0.4

0.6

Figure 3: Markov graph of the trimester 3

Stochastic matrix

S =

comfortable cold[
0.95 0.05
0.4 0.6

]
comfortablecold (39)

Probability vector
As the first day of March 2022 the temperature is comfortable then the probability vector is

X1 =

[
(s1)1 = 1
(s1)2 = 0

]
,

where X1 is the probability vector of the first day of the Trimester. For n3 = 1, ..., 92 we have

Xn3 = Sn3X0 (40)

Proposition 5. For the Trimester 3 the Markov Chain achieves equilibrium at n = 21.

Remark 7. From n3 = 21 the distribution is the same for the the two states then Pr(Xn3=21,.......92) =
1
2 which means that by day 21 a significant temperature change occur between the Comfortable
and Cold states that decrease the probability of fishing by 14%.
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5.7 Trimester 4: from 1 June to 31 August

Markov graph

Comfortable Warm0.93

0.07

0.2

0.8

Figure 4: Markov graph of the trimester 4

Stochastic matrix

S =

comfortable warm[
0.93 0.07
0.2 0.8

]
comfortablewarm (41)

Probability vector
As the first day of June 2022 the temperature is comfortable then the probability vector is

X1 =

[
(s1)1 = 1
(s1)2 = 0

]
,

where X1 is the probability vector of the first day of the Trimester. For n4 = 1, ..., 91 we have

Xn4 = Sn4X0. (42)

Proposition 6. For Trimester 4 the Markov Chain achieves equilibrium at n = 38.

Remark 8. From n4 = 38 the distribution is the same for the the two states then Pr(Xn4=38,......91) =
1
2 which means that by the day 38 a significant temperature change occur between the Comfortable
and Warm states that decrease the probability of fishing by 14%.

5.8 Spawning period

The period of spawning varies depending on the species, zone, fertility, meteorological condi-
tions,etc.

In order to protect the biodiversity of theses species the fishermen are involved to respect
the spawning period, which the temperature factor plays a major role.

6 Simulation

In this section we simulate the model above (estimation of the profit of two fishermen exploiting
three fish species in competition considering temperature factor). We consider the parameters
of system (3) as revealed in Table 1 in order to assure the existence and stability of the locally
asymptotically stable state of the three fish populations, for the economic parameters of system
(31) revealed in Table 2, and represent the profit estimation in Table 3.

Table 1: Biological Parameters of the three species.

Species1 Species2 Species3

r1 = 0.5 r2 = 0.3 r3 = 0.2

K1 = 1000 K2 = 700 K1 = 600

c12 = 2.10−4 c21 = 105 c31 = 10−4

c13 = 3.10−4 c23 = 2.10−5 c32 = 10−4
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Table 2: Economic Parameters of the mode

Species1 Species2 Species3

a1 = 0.1 a2 = 0.2 a3 = 0.3

p1 = 1 p2 = 2 p3 = 3

q1 = 0.1 q2 = 0.02 q3 = 0.004

c1 = 0.1 c1 = 0.1 c1 = 0.1

c2 = 0.2 c2 = 0.2 c2 = 0.2

Remark 9. The growth parameters are estimated by Von Bertalanffy for the Eastern Central
Atlantic.

Table 3: The Total profit estimation consedereing the temperature factor.

Profit Price Tr1 Profit Tr2 Profit Tr3 Profit Tr4 Profit Total Profit

Π1

Π2

p1 = 1
p2 = 2
p3 = 3

70.1
66.9

69.3
66.2

70.8
67.5

69.9
66.7

280.1
267.3

Π1

Π2

p1 = 11
p2 = 17
p3 = 23

736.3
732.1

728.2
724

743.3
739

734
729.8

2941.8
2924.9

Π1

Π2

p1 = 16
p2 = 27
p3 = 48

1123
1119.8

1110.6
1107.4

1133.7
1130.4

1119.5
1116.3

4486.8
4473.9

Π1

Π2

p1 = 31
p2 = 47
p3 = 78

2109.9
2106.4

2086.6
2083.2

2129.9
2126.4

2103.4
2099.9

8429.8
8415.9

Here Tr1, Tr2, Tr3, Tr4 are the Trimesters from 1 to 4, and Π1,Π2 are the first and second
fishermen profit.

These results are different from the results found by (Agmour et al., 2017). So we can assume
the impact of the temperature factor on the profit, and else if we take in consideration other
significant factors, the results will change, for that we aim to study other factors impact on the
fishermen profit.

In other hand, we observe that the Markov chain in some Trimesters reaches quickly the
equilibrium which means that the transition probability will remain Invariant, which is a limi-
tation for the tool, and we aim to study the convergence of the temperature estimation made
by us with the real temperature for the next year.

Also, as shown in the 4th Trimester the Markov equilibrium didn’t occur until the day 38,
what make us question if the Trimesters are more detailed and divided will that impact the
estimation quality, for that we need to study the convergence of the current Model, to a Model
more divided in term of time range, that we suggest to be the perspective of our next work.

7 Disscussion

This work is a case study of profit estimation considering the temperature factor, applied on
two fishermen catching three different species in competition, by the Markov chain tool, the
question involved through communications about this model is about the choice of estimating
the temperature by the Markov chain while we can have free Data on Internet of the Estimation
of the temperature, the answer we present is that even those Data on Internet are made by a
Mathematic tool, that can be other mathematical probability methods that Markov chain is one
of them, and also we aim to study other factors with the same tool so we need we suppose to
use the same estimation tool on all potential factors.
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8 Conclusion

In this paper, we have developed a Markovian model estimating the temperature factor changes
for the year 2023 by taking in consideration the seasons and temperature distribution of it, in
the way to estimate the fishing profit of two fishermen catching three species, the temperature
factor is a critic element that interfere in the species activities and spawning, and also for the
fishermen activities and effort dedicated.

9 Data Availability

The datasets analysed during the current study are available publicly in the websites; [www.onp.ma/]
and [www.windguru.cz].
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